Stochastic Nonlinear Model Predictive Control with Joint Chance Constraints
نویسندگان
چکیده
منابع مشابه
Receding-horizon Stochastic Model Predictive Control with Hard Input Constraints and Joint State Chance Constraints
This article considers the stochastic optimal control of discrete-time linear systems subject to (possibly) unbounded stochastic disturbances, hard constraints on the manipulated variables, and joint chance constraints on the states. A tractable convex second-order cone program (SOCP) is derived for calculating the receding-horizon control law at each time step. Feedback is incorporated during ...
متن کاملStochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints
This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure probabilistic constraint satisfaction. The general...
متن کاملOptimal Control with Fuzzy Chance Constraints
In this paper, a model of an optimal control problem with chance constraints is introduced. The parametersof the constraints are fuzzy, random or fuzzy random variables. Todefuzzify the constraints, we consider possibility levels. Bychance-constrained programming the chance constraints are converted to crisp constraints which are neither fuzzy nor stochastic and then the resulting classical op...
متن کاملIIS Cuts for Stochastic Programs with Joint Chance-Constraints
We present a new method for solving stochastic programs with joint chance constraints with discretely distributed random data. The problem can be reformulated as a large-scale mixed 0-1 integer program. We derive a new class of optimality cuts based on irreducibly infeasible subsets (IIS) of an LP defined by requiring that all scenarios be satisfied and propose a method for improving the upper ...
متن کاملChance Constrained Model Predictive Control
This work focuses on robustness of model predictive control (MPC) with respect to satisfaction of process output constraints. A method of improving such robustness is presented. The method relies on formulating output constraints as chance constraints using the uncertainty description of the process model. The resulting on-line optimization problem is convex. The proposed approach is illustrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2016
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2016.10.176